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Abstract 

We present a rigorous proof of the positive mass theorem for black holes. Accordingly, in a 
four-dimensional Lorentz manifold satisfying the dominant energy condition, the mass of a three- 
dimensional asymptotically flat slice with boundary composed of a finite number of future or past 
trapped closed 2-surfaces is nonnegative. The proof uses the classical Witten argument and is valid 
even if only rather weak asymptotic conditions are imposed. 
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0. Introduction 

Soon after the appearance of Witten’s [12] proof of the positive mass theorem using 
spinors, Gibbons et al. [4] (and independently Reula and Tod [ 111 in the asymptotically 
hyperbolic case) proposed to extend this proof to asymptotically flat manifolds containing 
one or several black holes, since physical as well as mathematical intuition suggested that 
the mass should also be nonnegative in this setting. The proof proposed in [4] demanded that 
the manifold should admit a nice conformal compactification at infinity and some arguments 
were missing. It has now appeared [3] that it might be useful to have a rigorous proof of 
such an extension with asymptotic conditions that are considerably weaker than the ones 
considered in [4]. This paper aims at filling this gap. 
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We shall work on a four-dimensional Lorentz manifold (N, v) with signature (- + ++). 
M will be a Riemannian hypersurface whose induced metric will be denoted by g. We 
moreover assume that it is asymptotically flat, in the sense that in some chart at infinity 

where e is the Euclidean metric of the chart, h the second fundamental form of M in N and 
the C,k.’ ‘s are weighted Holder spaces defined below. M being asymptotically flat, if E > i 
and if the scalar contraint Scalg - ]h]i + (trR /I)~ (where Scalg is the scalar curvature of R) 

is in L’, its mass is defined [l] as 

where S, is the sphere of radius r in a chart at infinity and v, its outward unit normal. 
Notice that our asymptotic conditions only imply that the metric should decay faster than 
r-Ii2 at infinity, a decay which may not be compatible with a conformal compactification 
procedure. If moreover the divergence constraint 68/z --d(trg h) is also in L’ , its momentum 
with respect to an asymptotically constant vector X is defined by 

p(X)= J__ lim 
87~ r-+00 s 

(h(u,, X) - g(X. u,)trh) d vols,. 

.% 

Mass and momentum are usually seen as the components of a4-vector, the energy-momentum 
vector p = (p” = m, p’, p2, p’). We shall then prove: 

Positive mass theorem (for black holes). Suppose (N, y) satisjies the dominant energy 
condition, and that M is an asymptotically fiat Riemannian hypersu$ace such that its 
energy-momentum is dejined and its boundary is composed of ajnite number of either past 
or future trapped closed 2-sugaces in N. Then 

3 

1_L12 = m* - C(/L’)’ > 0. 
i=l 

1. Geometric preliminaries 

As already mentioned, we shall work with (4-component) spinors. Recall that N is en- 
dowed with an SL(2, @)-principal bundle Pz. of spinorial frames and that the choice of a 
unit normal eg of M in N gives an embedding of the SU(2)-principal bundle of spinorial 
frames of M into PC. The usual (4-component) spinor bundle on N is 

c = PC x,,,C%iS, 

where p is the usual representation of SL(2, Q on C’. The spinor bundle C is then endowed 
with two inner products, the first one, coming from SL(2, Q-invariance, will be denoted 
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by (., .>; the other one, coming from SU(2)-invariance, is Hermitian positive definite and 
is defined by (.. .) = (en . ., .) where stands for Clifford multiplication of vectors upon 
spinors. Clifford multiplication by any vector is Hermitian with respect to (., .), Clifford 
multiplication by any vector tangent to M is anti-Hermitian for (., .) whereas Clifford multi- 
plication by eo is Hermitian. The bundle .Z is also endowed with two different connections, 
coming from the four-dimensional structure (and denoted by V) and the three-dimensional 
one (denoted by 0). They are related by the formula 

VX$ = VX~ - ii+(X). eo I). 

where h is the symmetric endomorphism associated to the second fundamental form (note 
that our conventions in this article are that hij = ~(0,~ ej, ee)). On the contrary of Clifford 
multiplication, both covariant derivatives respect the decomposition of C into half-spinor 
(2-component) representations. The Dirac-Witten operator is then defined on a spinor $ at 
a point x in A4 as 

~$f=~ei.V~,i. 

i=l 

where the summation is over any orthonormal basis of vectors of rr M. 
We shall consider here a Riemannian slice M that has an inner boundary aM. If yis 

the Levi-Civita connection of its induced metric, u its outer unit normal and 0 its second 
fundamental form (with the same convention as above, so that a round sphere in the flat 
Euclidean space would have here negative second fundamental form with respect to its outer 
normal), the following formula holds on spinors: 

Any component of the boundary is a future (resp. past) trapped (or future/past converging) 
surface if its mean curvature vector is causal and past (resp. future) pointing [9, Defini- 
tion 14.57, p. 4351. In our conventions, this means that on the whole of it, 

trh - h(u, v) > 1 tr0l (resp. - trh +h(u, u) 1 1 tr0l). 

We will denote by M, the domain contained between the boundary and a large geodesic 
sphere in M, denoted itself by S,. 

We also need to define the weighted Holder spaces (of spinors or tensors) 

Ck.a 
B = (cl E c:d,*, IJr-41jc” < 00,. . ) JIY~+kDkL+” i co, rk+b+a[Dku], < CO} 

where 

[D%& = sup Iz - Z’]-UIDkU(Z) - Dku(z’)), 
l,_-:‘l51 

and the {z;) are the coordinates of any chart at infinity (with r = lzl), and the weighted 
Sobolev spaces, defined as in [lo]: 
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k HP = (u E Hkc, rB+tu E L2 VI 5 k}, 

wk,p = (u E w;:, rp+/u E LY Vl 5 k). a 

The proof of the positive mass theorem relies on two different tools: an integration by parts 
formula or Bochner-Lichnerowicz-Weitzenbock formula for the Dirac-Witten operator and 
an existence theorem for some asymptotically constant spinor sitting in the kernel of 23. We 
shall now recall the formula which is by now well-known and we defer the analysis to the 
next section. 

Lemma 1. The Bochner-Lichnerowicz-Weitzenbock-Witten formula states 

where R is the endomorphism of the spinor bundle defined on a spinor q by 

Rq = j(ScalY + 4RicY(eu, eu) + 2eu RicY(eu).)cp 

i 

3 

=- : G(eo,eo)+CG(eo,ei)eo.ei. 
i=l 

where G is the Einstein tensor G = Ric Y - iScalY y. If the dominant energy condition is 
satisfied in N, then R is nonnegative. 

Lemma 2. For any smooth spinor$eld 9, if v, the outer unit normal of Sr, 

2. Analysis of the Dirac-Witten operator 

We now enter the main technical part of the paper. We are going to prove that the Dirac- 
Witten operator, together with some well-chosen boundary conditions defines an isomor- 
phism between some adapted weighted Sobolev spaces. 

Let us first define on the restriction of the bundle C over i3 M the endomorphism 

Lemma 3. E is symmetric, it anticommutes to the Clifford action of the normals v or eg 
and it commutes to the action of any vector tangent to the boundary. It also respects the 
decomposition into 2-component spinors. 
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Since ~~ = 1, the spinor bundle restricted over the boundary splits into the +l and 
-1 eigenbundles of E, denoted by C+ and Z_ (be careful this has nothing to do with the 
decomposition of the spinor bundle into half-spinor representations). 

Let us now define two operators 

I$* : HZ,(M, C) + L;(M, C) x H3'2(aM, C,) x H"2(aM, IT,), 

+ - P2$, Ellr f +, Ecw) f WI. 

Our main goal in this section is to show that 5_?2,+ is an isomorphism in the chosen weighted 
spaces. 

Following Bunke’s results [2], we first show that the boundary conditions 

clCI*::, s(Dti) k D$ 

both satisfy the Lopatinski-Shapiro condition for the operators Z2.h. Let us do it for the 
“ 31 - sign: we want, for any vector 4, tangent to the boundary, 

U_ (Eu - U, E((ic + iDru) . u) - (i< + iD,v) . u)lt,O 

to be a bijection from the space of bounded solutions of the ODE (complex dimension 4) 

I< + uD,12u(t) = 0 

(Q = -3, as usual) to the spinor bundle restricted to the boundary (same dimension). 
Consider injectivity: solutions of the ODE are of the form 

u(t) = uue-16i’, ~0 E C 

and being in the kernel of the boundary operator implies 

&UO = uo, E(it . ug - I<lu . ~40) = it . uo - I$lu ~0, 

so that 

(uo)f = 0, (UO)I = 0 

and 

[it . ~0 - ]<]u . uo]t = 0, [it . uo - ]<lu uu]I = 0, 

where the exponents f refer to the half-spin representations and the indices f to the 
corresponding eigensub-bundles relative to E. The commutation properties of the vectors 
with E then imply the desired result. 

We shall now consider here the case where the boundary is only one past trapped surface 
(this means that & will have the value + in the definition of the operators Pi,& above). The 
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general case can be easily obtained along the same lines. For the sake of simplicity, the 
operators 5.!i,+ will simply be denoted by 2;. 

Proposition 4. Suppose thut tr 0 - tr h + h(u, u) ) 0 along the boundary. Then S-(2 is 
injectivefrom HT, to L2 x H’/’ x H’12. I 

Proof The proof relies on the fact that )?I is itself injective. We first compute a general 
formula. If $J E C,?, then 

lim 
r+30 s 

(V,,, + v, V$, $,) = 0. 

s, 

From Lemma 2, we get that 

s 
@i/J, D$lj = /(V& V$) + I(@. R$) + I($? V”$ + !J W). 

M M M 3M 

We now compute the surface term, which is the only nonpositive term. 

Lemma 5. For any smooth +, 

v,,,+“.v&( 
k=2 

v ek.~e,~-~h(Pk,v)ek.eo.Ilr 
> 

+i (n-0 - (h(u, u) - trh)E) r/r. 

where e2. e3 is an orthonormal basis of TaM and yis the Levi-Civita connection qf 3 M. 

Proof of Lemma 5. From the expression of the Dirac-Witten operator, we get 

v.D++V1l$= c v.ek.Vck$ 
k=2,3 

and the formula follows by expressing the four-dimensional and three-dimensional con- 
nection coefficients with respect to the three-dimensional and two-dimensional connection 
coefficients together with their second fundamental forms. 0 

Proof of Proposition 4 (continued). From the hypotheses on E, we infer that both v ek. and 
ek eg. exchange its eigenbundles, so that the term where they appear does not contribute to 
($, V,$ + v. D$) (notice that 6. and v. are not V-parallel, whereas they are Fparallel; this 
is the reason why we need to express anything with respect to the 2-dimensional covariant 
derivative). The hypothesis on the dominant energy condition then imply that 

1 
(D@. D@) > /(V$. VlcI) + i / (9, (tr0 - (htv. v) - tr h)E)$). 

M M ilM 

Since C,? is dense in HL, , the formula is valid for any $ in HA,. 
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Hence, for any spinor field in the kernel of 2 1, 

and, since the right-hand side is a Hilbert norm on HA I, the spinor is identically zero. 

Consider now a spinor in the kernel of 22. Since HA is included in HL I, injectivity of JJ 1 
applied twice gives injectivity of 22. 0 

We now proceed to the proof of surjectivity. 

Proposition 6. Under the hypothesis tr B - tr h + h (IJ, v) > 0, the operator S2 is also 
sutjective. 

Proof: We are going to find a solution of 

52214 = (cp, qo, pl) E L; x H3j2 x H’i2. 

Choose $ in Hz, such that - 

C&k + 9. E(D$) + PJ = (PO? VI). 

Since the bilinear form 

s 
UV3 D@cr) 

M 

is coercive on (6 E HLI , EC + < = O), the Lax-Milgram lemma then provides, for any (D 
in IT.:, a unique 9 in (t E HL, , EC + < = 0) such that 

s 
P,9>%$) = 

s 
(rl><) V< E (< E @,A+6 =Ol. 

M M 

where 17 = cp -D2+. If the spinor field was smooth enough, we would then get by integration 
by parts 

We would then have, in a weak sense, 

D2$$D21c,-(p=0, E$++=o, &(D$)+D$=o. - 

But the boundary conditions given here satisfy the Lopatinski-Shapiro condition of el- 
lipticity; if our operators have smooth coefficients, we can apply the results of classical 



104 M. Herzlich/Journal of Geometry and Physics 26 (1998) 97-111 

pseudo-differential calculus [7, Chap. XX] and we conclude that $I has local regularity H2 
(including around the boundary) and the last PDE system is valid in the strong sense. 

If the local regularity of the metric is only C2.a, we shall prove this regularity result 
using the classical translations (or difference-quotient) method due to Nirenberg: this is 
quite classical but the author has been unable to find a reference where is stated a theorem 
applying directly to our situation (the closest being likely the work of Morrey on differential 
forms [8, Chap. 71): 

Lemma 7. The spinorjeld 9 is in H2 up to the boundary. 

ProoJ: We consider a local trivialization of the spinor bundle in a tubular neighborhood of 
a small open set L4 in the boundary: 

CMlzAx[0.6[ = 2.4 x ]O> 4xC4, 

where the fiber C4 is further decomposed into C2 @ C2, where the factors are the eigenspaces 
of E on L3M with respect to the eigenvalues fl. We denote by Rh a l-parameter family of 
diffeomorphisms of 2.4 (take for example the flow of some vector field Y of compact support 
in U), extended to ZA x [0, E[, and we define, for any 6 E {t E HL,, E[ + c = 01, 

Rt,c = (~3 (&C)(X)) = (~3 <(R&r)) 

in the previous trivialization. This provides us with a nice approximation of the derivative 

Dh< = ; (&& -c) 1 

in the direction of Y, which respects the space (6 E Hi1 , E< + < = 0). 
It is classical that the second derivative VVyt lives in L2 if 

is bounded uniformly in h. We shall now prove this property for VVrt with Y tangent to 
the boundary. 

Consider the spinor field 1c, previously found. Using a cut-off function we can restrict 
ourselves to a spinor field (still denoted by $) supported in a neighborhood of ZA x [0, E[, 
which satisfies 

Vt E It E ff:, , SuppO) c U x LO, 4, F( + < = 01, 

/ Plf~~~) = 1 (173 C)* 

UX[O.E[ UX[Od 

where n is an L2 spinor field. Let t = D-h Dh $I. Then 

s 
(D$> D(D-hDh$)) = 

s 
(173 D-hDh+‘), 

UX[O,E[ MXlO,F( 
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so that after a change of variables y = Rhx in the LHS, 

s (v(Dh’b)t %hz+>) = s (I], D-h Dh @) + correction terms 

UX[O,E[ UX[O.F[ 

where the “correction terms” include terms like 

s 
([Do, D-h]@, D&q) or 

s 
(D@I, i?, D-h]&+). 

UX[O,E[ UX[O,E[ 

From this we conclude 

s 
P(&$),~(&@)) 5 117111~ 11 D-hDh+ 11~2 +Ct 11 VDh$’ 11~2, 

UX[O,E[ 

where Ct is a constant containing the H’ -norm of r/r, the operator norm of the commutators 
[;D, Rh] and [27, R-h] (themselves estimated from the weighted C*-norm of the metric), 
and the weighted C’ -norm of the metric again. Denoting 

ah = iivDh+'iLqux[o,E[p 

the coercivity estimate eventually gives 

(ah)* 5 Cl oh, 

from which the conclusion follows. 
We then get, from the definition of Sobolev spaces H*, that there exists a constant C2 

such that for any pair of unit directions Y and 2 (such that one at least is tangent to the 
boundary) and any smooth compactly supported c, 

s 
WY@? vzo I C2lI~IIL2~ 

UxrO,E[ 

and this provides the correct estimates with one derivative (at least) tangent to the boundary. 
Moreover, 

(D$,l?<j= V”i-v’~ei’V~~~,V~~-“‘i:ei’V,iC 
i i=l i=l ) 

2 2 

= (V”$, V”O + IJ. 
c 

ei.Ve,ti,v’ 
c ei . Oqt 

i=l i=l 

so that from the formula 
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valid for any smooth compactly supported 4 and the previous estimates for derivatives 
tangent to the boundary, we get that 

which shows that the normal derivative V,V,$ also lives in L2. This ends the proof of the 

lemma. 0 

We now return to our solution I/J. Let us now define 7 = I/J + t+!r. From ellipticity of the 

Dirac operator, we also get that for any spinor field $ living in some Hi, 

where K2 c Kl are compact subsets of M containing the boundary. This inequality is 
indeed obtained by patching together the classical local inequalities [5] using Bartnik’s 
scaling argument (see [ 1, Proposition 1.151). 

Applying to ~RT (where /3~ is a cut-off function which is zero outside a ball of radius 
R and satisfies ( d/?R I 5 c R-' , ID dfiR I 5 c R-2) and letting R tend to infinity shows that 
I/J belongs to H!, and is the desired solution. Y2 is then surjective. 0 

Remarks. 
Since HT, is included in Cy;;, the same kind of estimate (in the Holder classes) shows 

further that our spinor field is contained in Cf;y (then in Cf;” with some E’ > $ since 
there are no critical weights of the Dirac operator between 0 and 1) around infinity. 
The isomorphism result is also true if the metric g (resp. second fundamental form 17) 
lives in the Sobolev spaces Wzy3,q (resp. Wi:,_3,y) with E > $. q > 3. This is proved 
in Appendix A. 
If the past trapped condition is replaced by a future trapped one, the same conclusions 
will hold with the + sign replaced by a - in the definition of the operators. If the boundary 
is a finite disjoint union of future or past trapped surfaces, we need to mix both kinds of 
boundary conditions. 
Notice also that the positivity of boundary term is obtained independently of the fact that 
V+ = 0. Thus, the idea of gauge choice founding [lo] may be still applicable in our 
case. 

Proof of the positive mass theorem. It is done as usual: let $0 be a spinor field which is 
constant in some chart around infinity, smooth and identically zero around the boundary. 
Then the conditions on the decay at infinity of the metric imply that V$o lives in Hd . We 
can then find $ = $0 + $1 with $1 in H?,, such that 22+ = 0. Injectivity of tit then 
shows that 

V$=O, &++$=o. 
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But Lemma 2 together with the fact that 

(where the F’s stand for the Euclidean coordinates of the chosen chart at infinity) give the 
positive mass theorem. 0 

Remark. As in [4], the positive mass theorem can be extended to charged black holes, thus 
implying that the mass must be bigger than the charge. The proof goes exactly along the 
same lines with the Levi-Civita connection V replaced by 

v~~=v,~-~w(eo..).eo.X.~+~ c W(G, eh)G . eb . x . $, 
lsa<bs3 

where w is the electromagnetic field. If the dominant energy condition (see [4,6]) is satisfied, 
the Einstein and Maxwell equations imply that the zeroth-order term in the Weitzenbock 
formula is still nonnegative, and the boundary terms have the right commutation properties 
with respect to E. As in the previous proof, this implies that we can find an asymptotically 
constant spinor, harmonic for the twisted Dirac-Witten operator 

P=eei-Vz. 
i=l 

Moreover, the boundary term now gives the inequality 

rr12- c (&2 2 P2 + Q2, 
1 g53 

where P and Q are the magnetic and electric charges of the black hole. 

Appendix A 

We shall prove here that the operator 22 is still an isomorphism if the metric is not 
C2.‘y but has only local regularity in Sobolev spaces, namely when gij - Sij is in W+!L:,~, 

the Einstein tensor is in L’ n Loo and the second fundamental form is in WlT,_3,q with 

q > 3, 6 > i. These conditions are not completely optimal in the sense that regularity 
can certainely be lessened a bit without bijectivity of C2 being lost, but the results proven 
here apply to almost all conditions of asymptotic flatness considered in the literature for 
positive mass theorems (see for instance [ 1, Section 41). The proof relies on the previous 
isomorphism result for metrics with C:,a coefficients and on some a priori estimates. Once 
again. the path is rather classical and is strongly inspired from [5, Chap. 91. 

We shall in particular need the following “scale-broken” estimate: 

Lemma A.l. For any u in [u E Wi”, EU + 21 = 0, E(n) + Dv = O}, 1 < p 5 q andany 

6 E LQ \ (N - 3/P) 
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I141w2.P 5 uII~241,~ s 8+2 + II~IlLqMR)), 

where C depends only on the Wil\,q -norm of the metric coeficients, the WJiq, _3,q -norm 

of the second fondamental form and the L’ f’ Loo norm of the Einstein tensol; and R is a 
large but finite positive constant. 

ProojI This inequality is obtained by piecing together a “scale-broken” inequality faraway 
from the boundary proven by Bartnik [ 1, Theorem 1. lo] and a local inequality around the 
boundary, proven below. 
(i) The “scale-broken” inequality is the following: 

IIq++4\MR) 5 C(ll~2uIIL~+2(M\MR,2) + II4ILqMR\MR,?)h s 
It has been proven by Bartnik for any operator acting on scalar functions and asymptotic 
to the flat Laplacian [ 1, Theorem 1.10 and especially formula ( 1.28)] but his proof can 
be readily extended to our case (remember V2 = A + R): indeed the only important 
points are estimates for the rough laplacian of the flat metric (which hold independently 
of the fact that the unknown is or is not a scalar function) and the fact that the difference 
between V2 and this rough Laplacian goes to zero in M \ MR in W,“’ operator norm 
when R goes to infinity. 

(ii) To prove the local inequality at the boundary, we consider a coordinate chart around 
some point of aM into a half-ball B+ = B f’ rW: = {x E B, x1 > 0) of R3 and a local 
trivialization of the spinor bundle as in the proof of Proposition 6 and Lemma 7. 

Let u be a W2*P spinor field such that EU + u = 0, ~(23~) + Du = 0 and D2u = f 
and suppose (this is always possible with a cut-off argument) that both u and f are zero in 
lR; \ B. The desired inequality is 

II4IW2.P(B+) 5 C(llf IILqB;) + Il4lLJyB~)) 
with C independent of u and f and B’+ a half-ball slightly bigger than B+. 

We consider first the case of the operator ;I> for the flat metric (i.e. with constant coeffi- 
cients); we then extend u and f by odd reflexion to all of R3: 

U(Xl, x2, x3) = -+(---xl, x2, x3), fh, x2,x3) = -f(--x1, x27x3). 

It follows that the extended functions satisfy D2u = f in all of R”: more precisely, for any 
smooth compactly supported 6 and any even function n E C”(R) which is zero on [0, a], 
1 on [2a, +oc[ and I#( 5 2/a, 

s 
(Du, R17<)) = s (ft 07 

M M 

so that 

I! 
Q ((Du, RY) - (ft <)I 

= 
s dpu,v'g 
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= 
s 

r7’(% v . C(x’, Xl> - 1) .6(x’, -x1)) 

O<Xl<20 

< - 
s 

2~177m4l sup lot-I 

o<x, 120 

I sup IVCI 
s 

IDul 

O<Xl<20 

109 

which goes to zero with (T. 
Then, the boundary estimate for this Dirac operator with constant coefficients is obtained 

from the well-known interior local estimate for the rough laplacian of the flat metric. The 
needed boundary estimate for the general squared Dirac operator then follows from the 
usual “freezing-the-coefficients” method [5, Theorems 9. I 1 and 9.131. 0 

Lemma A.2. If the dominant energy condition is satisfied, then for any u in 

(v E w;*p , EU + u = 0, &(DV) + Dv = 0) 

and any S E R’ \ (N - 3/p), with 6 > i - 3/p, 

where C is some positive constant depending only on an upper bound on the Wtl\,q -norm 

of the metric, W$ql_3,q -norm of the second fundamental form and L 1 n Loo-norm of the 
Einstein tensoI: 

ProoJ Notice that the injectivity (Proposition 5) remains true if 6 > $ - 3/p (because 

W2” c HI,) and the injection Wi” 8 -+ LP(MR) is compact [l] and we can argue 
exactly as in [5, Lemma 9.171: suppose, by contradiction, that the result is not true. Then 

2.P there must exist a sequence urn in W, such that EU, + u, = 0, E(Du~) f Dv, = 0 and 

IlGnIILP(MR) = 19 ll~2QnIILsp+2 - 0. 

But the estimate of the previous lemma shows that urn is bounded in Ws’;c;. hence a subse- 

quence (still denoted by u,) converges weakly in Wf$ and strongly in LP(MR). Thus the 
limit uoo satisfies 

II%aIILP(MR) = 1. 

The weak convergence of the sequence implies that, for any 20, 

(*> 

s (D2w, u,) = lim (D2W %I) = 0, m--too 
s 

M M 

hence vco is in the kernel of L2 which is zero by virtue of the dominant energy condition 
and the weight range. But this contradicts (*). 0 
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To obtain existence of a solution I+!I in H!, of 

v2+ = cp, E(V@) + D+ = 0, E$+$ =o, 

with cp in Ly, we approximate our metric and second fundamental form by a sequence of 

C$a (resp. Cl;,) metrics and second fundamental forms (gm, k,), converging in Wfyyiq x 
Wi:,_3,q to our original pair (g, k), to which we can apply the results of Propositions 4 
and 6. 

Let (lClrn) denote the sequence of solutions in HT, of 

(%)21cIm = cp3 Gz~l,+1Cr, =O, E,?7(%$,) + ‘o,lclm = 0. 

where VD, , E, denote the Dirac-Witten and boundary operators for the pair of metric and 
second fundamental form (gm, km); notice that the isomorphism properties of the operator 
C2 defined with this pair remain true even if there is some small negative part of the scalar 
curvature, since there is a constant c > 0 such that 

for all 4 in Hk,, so that any bad (i.e. negative) but small term may be absorbed into the 
left-hand side and the coercivity estimate still holds (bijectivity is an open condition). 

The estimates proven in this appendix show that the sequence (I/J,) is bounded, hence 
weakly (sub-)convergent in Hz, to some spinor $ which is the desired solution. 
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